
GGEMS
Release 1.0

GGEMS Developers

Mar 08, 2021

PREAMBLE

1 Introduction 3

2 Requirements 5
2.1 Operating Systems . 5
2.2 Python Version . 5
2.3 OpenCL Version . 5
2.4 Hardware . 6

3 Building & Installing 7
3.1 Prerequisites . 7
3.2 GGEMS Installation . 8

4 Getting Started 15

5 Navigators 17
5.1 Systems . 17
5.2 Phantoms . 19

6 Dosimetry 21

7 Physical Processes & Range cuts 23
7.1 Physical Processes . 23
7.2 Range Cuts . 25

8 Sources 27
8.1 X-ray Source . 27

9 GGEMS Commands 29

10 Examples & Tools 31
10.1 Example 0: Cross-Section Computation . 31
10.2 Example 1: Total Attenuation . 32
10.3 Example 2: CT Scanner . 33
10.4 Example 3: Voxelized Phantom Generator . 35
10.5 Example 4: Dosimetry . 35

11 Release Notes 39
11.1 Supported and Tested Platforms . 39
11.2 What You Can Do in GGEMS . 39
11.3 Compilation Warnings . 40
11.4 GGEMS Software License . 40

i

12 GGEMS Design 41

13 Make a GGEMS Project 43
13.1 Template . 43
13.2 Python . 45
13.3 C++ . 46

14 Portable Document 49

ii

GGEMS, Release 1.0

GGEMS is an advanced Monte Carlo simulation platform using CPU and GPU architecture targeting medical appli-
cations (imaging and particle therapy). This code is based on the well-validated Geant4 physics model and capable to
be executed in both CPU and GPU devices using the OpenCL library.

This documentation is divided into three parts.

First, as preamble, an introduction to GGEMS and the informations are given in order to install your environment for
GGEMS.

Second, for a standard user, informations about all GGEMS potential are given.Examples and tools are also illustrated
and explained. And all the command lines are listed using both C++ and python instructions.

And finally, in the last part of this documentation, a more detailed description concerning GGEMS core for advanced
user. The purpose of this part is to give enough informations to an user to implement a custom part of code in GGEMS.

PREAMBLE 1

GGEMS, Release 1.0

2 PREAMBLE

CHAPTER

ONE

INTRODUCTION

GGEMS (GPU Geant4-based Monte Carlo Simulations) is an advanced Monte Carlo simulation platform using the
OpenCL library managing CPU and GPU architecture. GGEMS is written in C++, and can be used using python
commands. The reader is assumed to have some basic knowledge of object-oriented programming using C++.

Well-validated Geant4 physic models are used in GGEMS and implemented using OpenCL.

The aim of GGEMS is to provide a fast simulation platform for imaging application and particle therapy. To favor
speed of computation, GGEMS is not a very generic platform as Geant4 or GATE. For very realistic simulation with
lot of information results, Geant4 and GATE are still recommended.

GGEMS features:

• Photon particle tracking

• Multithreaded CPU

• GPU

• Single or double float precision for dosimetry application

• External X-ray source

• Navigation in simple box volume or voxelized volume

• Flat or curved detector for CBCT/CT application

GGEMS medical applications:

• CT/CBCT imaging (standard, dual-energy)

• External radiotherapy (IMRT and VMAT)

• Portal imaging from LINAC system

In the next GGEMS releases, the aim is to implement the following applications and features:

• Visualization

• Positron particle tracking

• Electron particle tracking

• Mesh volume

• Voxelized source

• PET imaging

• SPECT imaging

• Intra-operative radiotherapy (brachytherapy and intrabeam)

• Upgrading OpenCL 1.2 to OpenCL 3.0+

3

https://geant4.web.cern.ch
https://geant4.web.cern.ch
http://www.opengatecollaboration.org/

GGEMS, Release 1.0

• Multi-GPU approach

• AMD architecture validation

• MacOS system validation

4 Chapter 1. Introduction

CHAPTER

TWO

REQUIREMENTS

GGEMS is a multiplatform application using OpenCL

2.1 Operating Systems

2.1.1 Supported

• Linux (Any distribution, Debian, Ubuntu, . . .)

• Windows 10

2.1.2 Maybe Supported

GGEMS should work on a MacOS system, but this has not been tested

• MacOS X

2.2 Python Version

GGEMS supports the following version

• Python 3.6+

2.3 OpenCL Version

GGEMS validated using the following version

• OpenCL 1.2

5

https://www.khronos.org/opencl

GGEMS, Release 1.0

2.4 Hardware

GGEMS can be used on lot of different hardwares such as CPU, GPU and graphic cards included in CPU (Intel HD
Graphics)

2.4.1 Supported

• Intel (CPU + HD Graphics)

• NVIDIA

2.4.2 Maybe Supported

GGEMS should work on the following hardware, but not tested yet

• AMD

6 Chapter 2. Requirements

CHAPTER

THREE

BUILDING & INSTALLING

Note: GGEMS is written in C++ and using the OpenCL C++ API. However, the most useful GGEMS functions have
been wrapped to be called in python version 3. Python is not mandatory, GGEMS can be used only in C++ too. Lot
of C++ and python examples are given in this manual.

3.1 Prerequisites

GGEMS code is based on the OpenCL library. For each platform (NVIDIA, Intel, AMD) in your computer, you have
to install a specific driver provided by the vendor.

3.1.1 NVIDIA

Linux & Windows

CUDA and NVIDIA driver have to be installed if you want to use GGEMS on a NVIDIA architecture. The easiest
way to install OpenCL on NVIDIA platform is to download CUDA and NVIDIA driver in the same time from the
following link: https://developer.nvidia.com/cuda-downloads.

GGEMS has been tested on the lastest CUDA and NVIDIA versions, and also some older versions.

Warning: CUDA is not used in GGEMS, but the OpenCL library file in included in CUDA folder.

Warning: It is recommanded to install CUDA and the NVIDIA driver directly from the NVIDIA website. Using
packaging tool (as apt) is very convenient but can produce some troubles during GGEMS executation.

7

https://developer.nvidia.com/cuda-downloads

GGEMS, Release 1.0

3.1.2 INTEL

Linux & Windows

Using GGEMS on Intel architecture require Intel driver. More information about Intel SDK for OpenCL applica-
tions can be find in the following link: https://software.intel.com/content/www/us/en/develop/tools/opencl-sdk.html.
Both drivers for Linux and Windows can be downloaded here: https://software.intel.com/content/www/us/en/develop/
articles/opencl-drivers.html

3.1.3 AMD

Linux & Windows

AMD platform has not be tested, but surely with few modifications GGEMS will run on a AMD platform. The correct
driver for CPU and/or GPU should be available on the following link: https://www.amd.com/en/support. Don’t hesitate
to contact the GGEMS team if you need help for AMD implementation. For the next releases, AMD platform will be
tested and validated.

Important: All previous drivers have to be installed before to install GGEMS. Install NVIDIA driver before Intel
driver is recommanded, if using GGEMS on both architecture is required.

3.2 GGEMS Installation

CMAKE is required to install GGEMS. The minimal CMAKE version is 3.8.

3.2.1 Linux

Intel and/or NVIDIA drivers are supposed to be installed. Download GGEMS from the website, or from a terminal:

$ wget https://ggems.fr/download/ggems_v1.0.zip

Unzip the downloaded file, create a folder named GGEMS_build (or another name), and launch the command ‘cc-
make’. Create an install folder is recommanded.

$ unzip ggems_v1.0.zip
$ mkdir GGEMS_build
$ mkdir GGEMS_install
$ cd GGEMS_build
$ ccmake ../GGEMS

8 Chapter 3. Building & Installing

https://software.intel.com/content/www/us/en/develop/tools/opencl-sdk.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-drivers.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-drivers.html
https://www.amd.com/en/support
https://cmake.org/

GGEMS, Release 1.0

Note: By default, the GNU compiler is used on Linux. CLANG can also be used. The compiler can be modify in the
CMakeLists.txt file and empty the CMAKE cache.

In the previous images ‘YOUR_PATH’ is automatically found by CMAKE. CMAKE parameters shown previously
are explained here. Last step, compile and install GGEMS.

$ make -jN
$ make install

Final step, configuration of your environment. There are many ways to do that. Since GGEMS is a library, you have
to indicate its location in your environment file (.bashrc for instance).

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:YOUR_PATH/GGEMS_install/ggems/lib

To load permanently the GGEMS python module, we also recommand to add the following line in your environment
file

export PYTHONPATH=$PYTHONPATH:YOUR_PATH/GGEMS_install/ggems/python_module
export PYTHONPATH=$PYTHONPATH:YOUR_PATH/GGEMS_install/ggems/lib

GGEMS is now installed on your system. To test the installation, try to launch GGEMS examples or load the GGEMS
python module from python console.

from ggems import *
opencl_manager.print_infos()
opencl_manager.clean()
exit()

3.2. GGEMS Installation 9

GGEMS, Release 1.0

3.2.2 Windows

Note: The following installation process for Windows is done using the classical Windows command prompt. Visual
Studio is the compiler by default. CLANG can be selected by modifying the CMakeLists.txt file.

Important: Only Visual Studio (CL) and CLANG are validated on Windows. GNU GCC is not recommanded.

Visual Studio is assumed well configured. The command ‘cl.exe’ should be recognize in your command prompt. If
not, there some useful commands to configure Visual Studio 2019 in a batch script file (named ‘set_compilers.bat’ for
instance). If a previous version of Visual Studio code is installed on your computed, you might modify this script.

@echo OFF
if "%VCTOOLKIT_VARS_ARE_SET%" == "true" goto done

echo --- Setting Microsoft Visual C++ Toolkit 2019 environment variables... ---

call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\
→˓Build\vcvarsall.bat" x86_amd64

set PATH="%VCToolkitInstallDir%"\bin;%PATH%
set INCLUDE="%VCToolkitInstallDir%"\include;%INCLUDE%
set LIB="%VCToolkitInstallDir%"\lib;%LIB%

set VCTOOLKIT_VARS_ARE_SET=true
echo Done.
:done

Calling the previous script typing the following command:

C:\Users\XXX> set_compilers.bat

Download GGEMS from the website. Unzip GGEMS in your environment folder (for instance C:\Users\XXX). Then
create both GGEMS_build and GGEMS_install folder.

C:\Users\XXX> md GGEMS_build
C:\Users\XXX> md GGEMS_install

Go to the build folder and launch CMAKE.

C:\Users\XXX> cd GGEMS_build
C:\Users\XXX\GGEMS_build> cmake-gui

10 Chapter 3. Building & Installing

GGEMS, Release 1.0

Note: For multithreaded compilation it is recommanded to use Ninja generator and not nmake. Ninja can be install
as a package during visual studio installation or directly from here https://ninja-build.org/

Important: Order during installation of NVIDIA and Intel driver could be important. To check that, go to your
environment variables in PATH variable and check which OpenCL library is call first. NVIDIA OpenCL library
should be called first.

Final step, compilation and installation using nmake or ninja.

C:\Users\XXX\GGEMS_build> nmake install

or

3.2. GGEMS Installation 11

https://ninja-build.org/

GGEMS, Release 1.0

C:\Users\XXX\GGEMS_build> ninja install

GGEMS have to be set in your environment variables by creating (or add an entry) a PYTHONPATH variable and add
an entry to the PATH variable. The following batch script can do that for you in the command prompt.

@echo OFF
if "%GGEMS_VARS_ARE_SET%" == "true" goto done

echo --- Setting GGEMS... ---
set PYTHONPATH=%PYTHONPATH%;C:\Users\XXX\GGEMS_install\ggems\python_module
set PYTHONPATH=%PYTHONPATH%;C:\Users\XXX\GGEMS_install\ggems\lib
set PATH=%PATH%;C:\Users\XXX\GGEMS_install\ggems\lib

set GGEMS_VARS_ARE_SET=true
echo Done.
:done

GGEMS is now installed on your system. To test the installation, try to launch GGEMS examples or load the GGEMS
python module from python console.

from ggems import *
opencl_manager.print_infos()
opencl_manager.clean()
exit()

3.2.3 CMAKE Parameters

BUILD_EXAMPLES

By default this option is set to ON. During the installation all C++ executables are copied to the respective example
folder.

CMAKE_INSTALL_PREFIX

Path to your installation folder

DOSIMETRY_DOUBLE_PRECISION

By default this option is set to ON. For dosimetry the computation are in double float precision.

GGEMS_PATH

Path found automatically by CMAKE. It corresponds to GGEMS source folder.

12 Chapter 3. Building & Installing

GGEMS, Release 1.0

MAXIMUM_PARTICLES

By default the batch of maximum particles simulated by GGEMS is 1048576. This number can be higher depending
on your graphic cards.

OPENCL_CACHE_KERNEL_COMPILATION

By default this option is set to ON. It means the compiled OpenCL kernels are stored in the cache folder during the
compilation process. It’s recommanded to set this option to OFF, if you want modify code inside an OpenCL kernel
and delete the OpenCL cache too.

OPENCL_KERNEL_PATH

Path to GGEMS OpenCL kernels. This path is automatically found by CMAKE.

PYTHON_MODULE_PATH

Path to GGEMS python module. This path is automatically found by CMAKE.

3.2. GGEMS Installation 13

GGEMS, Release 1.0

14 Chapter 3. Building & Installing

CHAPTER

FOUR

GETTING STARTED

GGEMS can be called using a python console

$ python
Python 3.9.1 (tags/v3.9.1:1e5d33e, Dec 7 2020, 17:08:21) [MSC v.1927 64 bit (AMD64)]
→˓on win32
Type "help", "copyright", "credits" or "license" for more information
>>> from ggems import *
>>> opencl_manager.print_infos()
>>> opencl_manager.set_device_index(0)
>>> opencl_manager.clean()
>>> exit()

With the previous command lines, the user has the possibility checking which device is recognized by GGEMS. And
the device 0 is selected.

Important: If an OpenCL device is missing, please check your installation driver for the missing device.

The best way learning how GGEMS is working, is to try each example available in the example folders. Using
GGEMS, for a personnal project, from scratch, using python or C++ is explained in the developer part.

15

GGEMS, Release 1.0

16 Chapter 4. Getting Started

CHAPTER

FIVE

NAVIGATORS

The particles are only tracked in navigator volumes. There are two types of navigators in GGEMS:

• System (detector)

• Phantom (object, patient)

For each navigator, three elements are associated:

• a solid: geometry of the navigator

• a list of materials

• physical processes

5.1 Systems

In GGEMS, only CT/CBCT system is available for moment. This detector is composed by pixels arranged in modules.
The following figure shows the reference axis of CT/CBCT system.

A CT/CBCT system is created using the following line:

17

GGEMS, Release 1.0

cbct_system = GGEMSCTSystem('detector')

Types of CT/CBCT detector are:

• flat panel

• curved

5.1.1 Flat panel

This type of geometry is well adapted for CBCT configuration.

cbct_system.set_ct_type('flat')

5.1.2 Curved

This type of geometry is well adapted for CT configuration.

cbct_system.set_ct_type('curved')

Note: For curved geometry, the angle between modules is automatically computed. The center of rotation is the
source position, and there is no gap between modules.

For each type of detector, number of modules, number of detection elements within module and their sizes are set as
following:

cbct_system.set_number_of_modules(1, 3)
cbct_system.set_number_of_detection_elements(12, 4, 1)
cbct_system.set_size_of_detection_elements(1.0, 1.0, 1.0, 'mm')

Detector can be composed by one type of material:

cbct_system.set_material('GOS')

18 Chapter 5. Navigators

GGEMS, Release 1.0

And a threshold can be applyied specifically to the detector:

cbct_system.set_threshold(10.0, 'keV')

Source isocenter distance (SID) and source detector distance (SDD) is set with the following commands:

cbct_system.set_source_detector_distance(1085.6, 'mm')
cbct_system.set_source_isocenter_distance(595.0, 'mm')

The CT/CBCT system can be rotated around world axis as following:

cbct_system.set_rotation(0.0, 0.0, 0.0, 'deg')

Final projection is saved in a MHD file:

cbct_system.save('projection.mhd')

5.2 Phantoms

In GGEMS, a voxelized phantom is the only available type of phantom. This phantom is defined in a mhd file and a
range data file, storing all label data. The reference axis of the phantom are the same than the global world volume

First a phantom is created by choosing a name, and loading a mhd file and a range data file:

phantom = GGEMSVoxelizedPhantom('phantom')
phantom.set_phantom('phantom.mhd', 'range_phantom.txt')

The user can set a position and a rotation applyied to the phantom using the following commands:

phantom.set_rotation(0.0, 0.0, 0.0, 'deg')
phantom.set_position(0.0, 0.0, 0.0, 'mm')

5.2. Phantoms 19

GGEMS, Release 1.0

20 Chapter 5. Navigators

CHAPTER

SIX

DOSIMETRY

During GGEMS simulation, a photon dosimetry module can be activated to compute absorbed dose in a specific
phantom.

Note: Only photon are simulated in the current version of GGEMS. In next releases electron will be implemented.

The dosimetry module is ‘GGEMSDosimetryCalculator’:

dosimetry = GGEMSDosimetryCalculator()

After creating the GGEMSDosimetryCalculator object, a navigator is attached:

dosimetry.attach_to_navigator('phantom')

The size of voxel in dosimetry image (dosel) can be set. If not set the dosel size is the same than voxel phantom size:

dosimetry.set_dosel_size(0.5, 0.5, 0.5, 'mm')

The absorbed dose is computed in gray (Gy). By default the dose in computed using materials in phantom. Otherwize
the user can set water material everywhere in phantom.

dosimetry.water_reference(True)

A custom threshold can be set on density. If density of phantom is below the threshold the dose value in 0.

dosimetry.minimum_density(0.1, 'g/cm3')

For dose output, there are many informations the user can save such as: uncertainty value of the dose, the deposited
energy in dosel, the squared of deposited energy in dosel and the number of interaction (hit) in dosel:

dosimetry.set_output('data/dosimetry')
dosimetry.uncertainty(True)
dosimetry.edep(True)
dosimetry.hit(True)
dosimetry.edep_squared(True)

There is a special output named ‘photon tracking’. This output registers the number of photons crossing a dosel. To
use this option, the size of dosel has to be the same than the phantom voxel size, otherwize GGEMS will throw an
error:

dosimetry.photon_tracking(True)

21

GGEMS, Release 1.0

22 Chapter 6. Dosimetry

CHAPTER

SEVEN

PHYSICAL PROCESSES & RANGE CUTS

7.1 Physical Processes

The photon processes impletemented are:

• Compton scattering

• Photoelectric effect

• Rayleigh scattering

Each of these processes are extracted from Geant4 version 10.6. For more information about physics, please read the
documentation on the Geant4 website.

By using python, the variable ‘processes_manager’ can be called to manage processes.

Important: Secondary particles (photon and electron) are not simulated yet. For Photoelectric effect, the photon is
killed during the interaction and the energy is locally deposited, and the fluorescence photon is not emitted.

7.1.1 Compton Scattering

The Geant4 model extracted is the ‘G4KleinNishinaCompton’ standard model. It is the fastest algorithm to simulate
this process. Compton scattering is activated for all the navigators, or for a specific navigator.

processes_manager.add_process('Compton', 'gamma', 'all')

In the previous line, Compton scattering is activated for all the navigators.

processes_manager.add_process('Compton', 'gamma', 'my_phantom')

In the previous line, Compton scattering is activated only for a navigator named ‘my_phantom’.

23

GGEMS, Release 1.0

7.1.2 Photoelectric Effect

The Geant4 model extracted is the ‘G4PhotoElectricEffect’ standard model using Sandia tables. Photoelectric effect
is activated for all the navigators, or for a specific navigator.

processes_manager.add_process('Photoelectric', 'gamma', 'all')

In the previous line, Photoelectric effect is activated for all the navigators.

processes_manager.add_process('Photoelectric', 'gamma', 'my_phantom')

In the previous line, Photoelectric effect is activated only for a navigator named ‘my_phantom’

7.1.3 Rayleigh Scattering

The Geant4 model extracted is the ‘G4LivermoreRayleighModel’ livermore model. Rayleigh scattering is activated
for all the navigators, or for a specific navigator.

processes_manager.add_process('Rayleigh', 'gamma', 'all')

In the previous line, Rayleigh scattering is activated for all the navigators.

processes_manager.add_process('Rayleigh', 'gamma', 'my_phantom')

In the previous line, Rayleigh scattering is activated only for a navigator named ‘my_phantom’

7.1.4 Process Parameters Building

The cross-sections are computed during the GGEMS initialization step. The parameters used for the cross-sections
building can be customized by the user, however it is recommanded to use the default parameters. The customizable
parameters are:

• Minimum energy of cross-section table

• Maximum energy of cross-section table

• Number of bins in cross-section table

The default parameters are defined as following:

processes_manager.set_cross_section_table_number_of_bins(220)
processes_manager.set_cross_section_table_energy_min(1.0, 'keV')
processes_manager.set_cross_section_table_energy_max(1.0, 'MeV')

7.1.5 Process Verbosity

Informations about processes can be printed by GGEMS:

• Available processes

• Global informations about processes

• Cross-section value in tables

The list of commands are:

24 Chapter 7. Physical Processes & Range cuts

GGEMS, Release 1.0

processes_manager.print_available_processes()
processes_manager.print_infos()
processes_manager.print_tables(True)

7.2 Range Cuts

The cuts are defined for each particle in distance unit in all navigator or a specific navigator. During the GGEMS
initialization the cuts are converted in energy for each defined material in navigator. If the particle energy is below the
cut, then the particle is killed and the energy locally deposited. By default the cuts are 1 micron.

range_cuts_manager.set_cut('gamma', 0.1, 'mm', 'all')

In the previous line, cuts are activated for photon for all navigators.

range_cuts_manager.set_cut('gamma', 0.1, 'mm', 'my_phantom')

In the previous line, cuts are activated for photon for a navigator named ‘my_phantom’.

7.2. Range Cuts 25

GGEMS, Release 1.0

26 Chapter 7. Physical Processes & Range cuts

CHAPTER

EIGHT

SOURCES

The source strategy in GGEMS is to develop a optimized source for each application. For moment, only CT/CBCT
application is developed so the source type available is a cone-beam X-ray source.

8.1 X-ray Source

X-ray source is defined as a cone-beam geometry. The direction of the generated particles point always to the center
of the world. This source has its own axis as defined in the image below:

Some commands are provided managing a X-ray source.

First, the user has to create source by choosing a name:

xray_source = GGEMSXRaySource('xray_source')

The particle type is only photon and can be selected with the following command:

xray_source.set_source_particle_type('gamma')

The number of generated particles during the run is defined by the user:

27

GGEMS, Release 1.0

xray_source.set_number_of_particles(1000000000)

The position and rotation of the source are defined in the global world reference axis and the cone-beam source is
defined with an aperture angle.

xray_source.set_position(-595.0, 0.0, 0.0, 'mm')
xray_source.set_rotation(0.0, 0.0, 0.0, 'deg')
xray_source.set_beam_aperture(12.5, 'deg')

A X-ray source is defined with a focal spot size. If defined at (0, 0, 0) mm, it is similar to a point source, otherwize it
is a more realistic X-ray source with a small rectangular surface defined in source axis reference:

xray_source.set_focal_spot_size(0.0, 0.0, 0.0, 'mm')

Important: The focal spot size is defined in source axis reference and not in global world reference!!!

The energy source can be defined using a single energy value or a spectrum included in a text file.

xray_source.set_polyenergy('data/spectrum_120kVp_2mmAl.dat')
OR
xray_source.set_monoenergy(25.0, 'keV')

28 Chapter 8. Sources

CHAPTER

NINE

GGEMS COMMANDS

The main steps in GGEMS are the initialize and run methods.

ggems_manager.initialize()
ggems_manager.run()

Different useful information output are available for the user during GGEMS executions.

To print all informations about OpenCL device:

ggems_manager.opencl_verbose(True)

To print all informations about material database:

ggems_manager.material_database_verbose(True)

To print all information about navigator (system + phantom):

ggems_manager.navigator_verbose(True)

To print all informations about source:

ggems_manager.source_verbose(True)

To print all informations about allocated memory:

ggems_manager.memory_verbose(True)

To print all informations about activated processes:

ggems_manager.process_verbose(True)

To print all informations about range cuts:

ggems_manager.range_cuts_verbose(True)

To print seed and state of the random:

ggems_manager.random_verbose(True)

To print kernel computation time:

ggems_manager.kernel_verbose(True)

To print tracking informations about a specific particle index:

29

GGEMS, Release 1.0

ggems_manager.tracking_verbose(True, 12)

30 Chapter 9. GGEMS Commands

CHAPTER

TEN

EXAMPLES & TOOLS

A list of examples and tools are provided for GGEMS users. C++ and python instructions are given. For C++, a
CMakeLists.txt file is mandatory for compilation.

Note: Examples are compiled and installed when the compilation option ‘BUILD_EXAMPLES’ is set to ON. C++
executables are installed in example folders.

10.1 Example 0: Cross-Section Computation

The purpose of this example is to provide a tool computing cross-section for a specific material and a specific photon
physical process. The energy (in MeV) and the OpenCL device are set by the user.

$ python cross_sections.py [-h] [-d DEVICE] [-m MATERIAL] -p [PROCESS]-e [ENERGY]
-h/--help Printing help into the screen
-d/--device Setting OpenCL id
-m/--material Setting one of material defined in GGEMS (Water, Air, ...)
-p/--process Setting photon physical process (Compton, Rayleigh, Photoelectric)
-e/--energy Setting photon energy in MeV

The macro is in the file ‘cross_section.py’.

Verbosity level is defined in the range [0;3]. For a silent GGEMS execution, the level is set to 0, otherwise 3 for lot of
informations.

GGEMSVerbosity(0)
opencl_manager.set_device_index(device_id)

GGEMSMaterial object is created, and each new material can be added. The initialization step is mandatory and
compute all physical tables, and store them on an OpenCL device.

materials = GGEMSMaterials()
materials.add_material(material_name)
materials.initialize()

Before using a physical process, GGEMSCrossSection object is created. Then each process can be added individually.
And finally cross sections are computing by giving the list of materials.

cross_sections = GGEMSCrossSections()
cross_sections.add_process(process_name, 'gamma')
cross_sections.initialize(materials)

31

GGEMS, Release 1.0

Getting the cross section value (in cm2.g-1) for a specific energy (in MeV) is done by the following command:

cross_sections.get_cs(process_name, material_name, energy_MeV, 'MeV')

10.2 Example 1: Total Attenuation

Warning: This example is only available using python and the matplotlib library is mandatory.

This example is a tool for plotting the total attenuation of a material for energy between 0.01 MeV and 1 MeV. The
commands are similar to example 0, and all physical processes are activated.

$ python total_attenuation.py [-h] [-d DEVICE] [-m MATERIAL]
-h/--help Printing help into the screen
-d/--device Setting OpenCL id
-m/--material Setting one of material defined in GGEMS (Water, Air, ...)

Total attenuations for Water and LSO are shown below:

32 Chapter 10. Examples & Tools

GGEMS, Release 1.0

10.3 Example 2: CT Scanner

In this CT scanner example, a water box is simulated associated to a CT curved detector. Only one projection is
computed simulating 1e9 particles.

$ python ct_scanner.py [-h] [-d DEVICE]
-h/--help Printing help into the screen
-d/--device Setting OpenCL id

The water box phantom is loaded:

phantom = GGEMSVoxelizedPhantom('phantom')
phantom.set_phantom('data/phantom.mhd', 'data/range_phantom.txt')
phantom.set_rotation(0.0, 0.0, 0.0, 'deg')
phantom.set_position(0.0, 0.0, 0.0, 'mm')

Then CT curved detector is built:

ct_detector = GGEMSCTSystem('Stellar')
ct_detector.set_ct_type('curved')
ct_detector.set_number_of_modules(1, 46)
ct_detector.set_number_of_detection_elements(64, 16, 1)
ct_detector.set_size_of_detection_elements(0.6, 0.6, 0.6, 'mm')

(continues on next page)

10.3. Example 2: CT Scanner 33

GGEMS, Release 1.0

(continued from previous page)

ct_detector.set_material('GOS')
ct_detector.set_source_detector_distance(1085.6, 'mm')
ct_detector.set_source_isocenter_distance(595.0, 'mm')
ct_detector.set_rotation(0.0, 0.0, 0.0, 'deg')
ct_detector.set_threshold(10.0, 'keV')
ct_detector.save('data/projection')

Initialization of cone-beam X-ray source:

point_source = GGEMSXRaySource('point_source')
point_source.set_source_particle_type('gamma')
point_source.set_number_of_particles(1000000000)
point_source.set_position(-595.0, 0.0, 0.0, 'mm')
point_source.set_rotation(0.0, 0.0, 0.0, 'deg')
point_source.set_beam_aperture(12.5, 'deg')
point_source.set_focal_spot_size(0.0, 0.0, 0.0, 'mm')
point_source.set_polyenergy('data/spectrum_120kVp_2mmAl.dat')

34 Chapter 10. Examples & Tools

GGEMS, Release 1.0

Performance:

Device Computation Time [s]
GeForce GTX 1050 Ti 128
Quadro P400 404
Xeon X-2245 8 cores / 16 threads 132

10.4 Example 3: Voxelized Phantom Generator

A tool creating voxelized phantom is provided by GGEMS. Only basic shapes are available such as tube, box and
sphere. The output format is MHD, and the range material data file is created in same time than the voxelized volume.

$ python generate_volume.py [-h] [-d DEVICE]
-h/--help Printing help into the screen
-d/--device Setting OpenCL id

First step is to create global volume storing all other voxelized objets. Dimension, voxel size, name of output volume,
format data type and material are defined.

volume_creator_manager.set_dimensions(450, 450, 450)
volume_creator_manager.set_element_sizes(0.5, 0.5, 0.5, "mm")
volume_creator_manager.set_output('data/volume')
volume_creator_manager.set_range_output('data/range_volume')
volume_creator_manager.set_material('Air')
volume_creator_manager.set_data_type('MET_INT')
volume_creator_manager.initialize()

Then a voxelized volume can be drawn in the global volume. A box object is built with the command lines below:

box = GGEMSBox(24.0, 36.0, 56.0, 'mm')
box.set_position(-70.0, -30.0, 10.0, 'mm')
box.set_label_value(1)
box.set_material('Water')
box.initialize()
box.draw()
box.delete()

10.5 Example 4: Dosimetry

In dosimetry example, a cylinder is simulated computing absorbed dose inside it. Different results such as dose, energy
deposited. . . can be plotted. An external source, using GGEMS X-ray source is simulated generating 2e8 particles.

First, the cylinder phantom is loaded:

phantom = GGEMSVoxelizedPhantom('phantom')
phantom.set_phantom('data/phantom.mhd', 'data/range_phantom.txt')
phantom.set_rotation(0.0, 0.0, 0.0, 'deg')
phantom.set_position(0.0, 0.0, 0.0, 'mm')

Then dosimetry object is associated to the previous phantom, storing all data during particle tracking:

10.4. Example 3: Voxelized Phantom Generator 35

GGEMS, Release 1.0

dosimetry = GGEMSDosimetryCalculator('phantom')
dosimetry.set_output('data/dosimetry')
dosimetry.set_dosel_size(0.5, 0.5, 0.5, 'mm')
dosimetry.water_reference(False)
dosimetry.minimum_density(0.1, 'g/cm3')
dosimetry.uncertainty(True)
dosimetry.photon_tracking(True)
dosimetry.edep(True)
dosimetry.hit(True)
dosimetry.edep_squared(True)

And finally an external source using GGEMSXRaySource is created:

point_source = GGEMSXRaySource('point_source')
point_source.set_source_particle_type('gamma')
point_source.set_number_of_particles(200000000)
point_source.set_position(-595.0, 0.0, 0.0, 'mm')
point_source.set_rotation(0.0, 0.0, 0.0, 'deg')
point_source.set_beam_aperture(5.0, 'deg')
point_source.set_focal_spot_size(0.0, 0.0, 0.0, 'mm')
point_source.set_polyenergy('data/spectrum_120kVp_2mmAl.dat')

Fig. 1: Dose absorbed by cylinder phantom

Performance:

Device Computation Time [s]
GeForce GTX 1050 Ti 253
Quadro P400 1228
Xeon X-2245 8 cores / 16 threads 570

36 Chapter 10. Examples & Tools

GGEMS, Release 1.0

Fig. 2: Uncertainty dose computation

Fig. 3: Photon tracking in phantom

10.5. Example 4: Dosimetry 37

GGEMS, Release 1.0

38 Chapter 10. Examples & Tools

CHAPTER

ELEVEN

RELEASE NOTES

11.1 Supported and Tested Platforms

GGEMS has been tested only on 64 bits architecture.

Platforms: Linux, gcc-9.3, clang-11

Windows, Visual C++ 19.28 (Visual Studio 2019), clang-11

More verified and tested configurations: Linux, gcc-7.5, clang-9/10

Windows, clang-9/10

OpenCL devices:

Intel Xeon E5-2680, Xeon W-2245

HD Graphics 530

NVIDIA Quadro P400

GeForce GTX 980 Ti, 1050 Ti, 1080 Ti

11.2 What You Can Do in GGEMS

Applications: CT and CBCT systems

Photon dosimetry

Sources: X-ray source using spectrum

Point source and rectangular source derived for X-ray source

Volume: Voxelized phantom

Physical processes: Compton scattering

Rayleigh scattering

Photoelectric effect

Particles: Photon

Output: Raw file

MHD file

39

GGEMS, Release 1.0

11.3 Compilation Warnings

There may be a few compilation warnings on some platforms, particularly on MacOS, where GGEMS has not been
tested.

11.4 GGEMS Software License

A Software License applies to the GGEMS code. Users must accept this license in order to use it. The details and the
list of copyright holders is available at https://ggems.fr/about and also in the text file LICENSE distributed with the
source code.

40 Chapter 11. Release Notes

https://ggems.fr/about

CHAPTER

TWELVE

GGEMS DESIGN

The GGEMSManager class has two important steps:

• Initialization

• Running

The following schemes summarize these steps.

41

GGEMS, Release 1.0

42 Chapter 12. GGEMS Design

CHAPTER

THIRTEEN

MAKE A GGEMS PROJECT

GGEMS is designed as a library, and can be called using either python or C++. The performance are the same.

13.1 Template

GGEMS (C++ or python) macros are writting following this template:

43

GGEMS, Release 1.0

44 Chapter 13. Make a GGEMS Project

GGEMS, Release 1.0

13.2 Python

Before using python and GGEMS, check GGEMS ‘python_module’ is in your PYTHONPATH variable. PYTHON-
PATH has to point to the GGEMS library too.

Using GGEMS with python is very simple. A folder storing the project should be created. Inside this folder, write a
python file importing GGEMS.

from ggems import *

Verbosity level is defined in the range [0;3]. For a silent GGEMS execution, the level is set to 0, otherwise 3 for lot of
informations.

GGEMSVerbosity(0)

Next step, an OpenCL device is selected.

opencl_manager.set_device_index(0)

Then a material database has to be loaded in GGEMS. The material file provided by GGEMS is in ‘data’ folder. This
file can be copy and paste in your project, and a new material can be added.

materials_database_manager.set_materials('materials.txt')

The physical tables can be customized by changing the number of bins and the energy range. The following values are
the default values.

processes_manager.set_cross_section_table_number_of_bins(220)
processes_manager.set_cross_section_table_energy_min(1.0, 'keV')
processes_manager.set_cross_section_table_energy_max(10.0, 'MeV')

The photon physical processes are selecting using the process name, the concerning particle and the associated phan-
tom (or ‘all’ for all defined phantoms).

processes_manager.add_process('Compton', 'gamma', 'all')
processes_manager.add_process('Photoelectric', 'gamma', 'all')
processes_manager.add_process('Rayleigh', 'gamma', 'all')

Range cuts are defined in distance, particle type has to be specified and cuts are associated to a phantom (or ‘all’ for
all defined phantoms). The distance is converted in energy during the initialization step. During the particle tracking,
if the energy particle is below to the cut the particle is killed and the energy is locally deposited.

range_cuts_manager.set_cut('gamma', 0.1, 'mm', 'all')

GGEMS is called in python using the ‘ggems_manager’ variable. All verboses can be set to ‘True’ or ‘False’ depending
on the amount of details the user needs. In ‘tracking_verbose’, the second parameters is the index of particle to track.
All objects in GGEMS are initialized with the method ‘initialize’. The GGEMS simulations starts with the method
‘run’.

ggems_manager.opencl_verbose(True)
ggems_manager.material_database_verbose(True)
ggems_manager.navigator_verbose(True)
ggems_manager.source_verbose(True)
ggems_manager.memory_verbose(True)
ggems_manager.process_verbose(True)
ggems_manager.range_cuts_verbose(True)

(continues on next page)

13.2. Python 45

GGEMS, Release 1.0

(continued from previous page)

ggems_manager.random_verbose(True)
ggems_manager.kernel_verbose(True)
ggems_manager.tracking_verbose(True, 10)

ggems_manager.initialize()
ggems_manager.run()

The last step, exit GGEMS properly by cleaning OpenCL:

opencl_manager.clean()
exit()

13.3 C++

Building a project from scratch using GGEMS library in C++ is a little more difficult. A small example is given using
CMake.

Create a project folder (named ‘my_project’ for instance), then ‘include’ and ‘src’ folder can be created if custom C++
classes are written. A file named ‘main.cc’ is created for this example and ‘CMakeLists.txt’ file is also created. At this
stage, the folder structure is:

<my_project>
|-- include\
|-- src\
|-- main.cc
|-- CMakeLists.txt

Compiling this project can be done using the following ‘CMakeLists.txt’ example:

CMAKE_MINIMUM_REQUIRED(VERSION 3.8 FATAL_ERROR)

SET(ENV{CC} "clang")
SET(ENV{CXX} "clang++")

PROJECT(MYPROJECT LANGUAGES CXX)

FIND_PACKAGE(OpenCL REQUIRED)

SET(GGEMS_INCLUDE_DIRS "" CACHE PATH "Path to the GGEMS include directory")
SET(GGEMS_LIBRARY "" CACHE FILEPATH "GGEMS library")

INCLUDE_DIRECTORIES(${PROJECT_SOURCE_DIR}/include ${GGEMS_INCLUDE_DIRS})
INCLUDE_DIRECTORIES(SYSTEM ${OpenCL_INCLUDE_DIRS})

LINK_DIRECTORIES(${OpenCL_LIBRARY})

FILE(GLOB source ${PROJECT_SOURCE_DIR}/src/*.cc)

ADD_EXECUTABLE(my_project main.cc ${source})
TARGET_LINK_LIBRARIES(my_project ${OpenCL_LIBRARY} ${GGEMS_LIBRARY})

In main.cc file, GGEMS files are included:

46 Chapter 13. Make a GGEMS Project

GGEMS, Release 1.0

#include "GGEMS/global/GGEMSOpenCLManager.hh"
#include "GGEMS/global/GGEMSManager.hh"
#include "GGEMS/materials/GGEMSMaterialsDatabaseManager.hh"
#include "GGEMS/physics/GGEMSRangeCutsManager.hh"
#include "GGEMS/physics/GGEMSProcessesManager.hh"

For silent GGEMS execution, the level is set to 0, otherwize 3 for maximum information.

GGcout.SetVerbosity(0);
GGcerr.SetVerbosity(0);
GGwarn.SetVerbosity(0);

Next step, an OpenCL device is selected. Here, device 0 is selected:

GGEMSOpenCLManager& opencl_manager = GGEMSOpenCLManager::GetInstance();
opencl_manager.DeviceToActivate(0);

Then a material database has to be loaded in GGEMS. The material file provided by GGEMS is in ‘data’ folder. This
file can be copy and paste in your project, and a new material can be added.

GGEMSMaterialsDatabaseManager& material_manager =
→˓GGEMSMaterialsDatabaseManager::GetInstance();
material_manager.SetMaterialsDatabase("materials.txt");

The physical tables can be customized by changing the number of bins and the energy range. The following values are
the default values.

GGEMSProcessesManager& processes_manager = GGEMSProcessesManager::GetInstance();
processes_manager.SetCrossSectionTableNumberOfBins(220);
processes_manager.SetCrossSectionTableMinimumEnergy(1.0f, "keV");
processes_manager.SetCrossSectionTableMaximumEnergy(1.0f, "MeV");

The photon physical processes are selecting using the process name, the concerning particle and the associated phan-
tom (or ‘all’ for all defined phantoms).

processes_manager.AddProcess("Compton", "gamma", "all");
processes_manager.AddProcess("Photoelectric", "gamma", "all");
processes_manager.AddProcess("Rayleigh", "gamma", "all");

In GGEMS, range cuts are defined in distance, particle type has to be specified and cuts are associated to a phantom (or
‘all’ for all defined phantoms). The distance is converted in energy during the initialization step. During the particle
tracking, if the energy particle is below to the cut, then the particle is killed and the energy is locally deposited.

GGEMSRangeCutsManager& range_cuts_manager = GGEMSRangeCutsManager::GetInstance();
range_cuts_manager.SetLengthCut("all", "gamma", 0.1f, "mm");

GGEMS C++ singleton is called with ‘ggems_manager’ variable. All verboses can be set to ‘True’ or ‘False’ depend-
ing on the amount of details the user needs. In ‘tracking_verbose’, the second parameters in the index of particle to
track. All objects in GGEMS are initialized with the method ‘initialize’. The GGEMS simulations starts with the
method ‘run’.

GGEMSManager& ggems_manager = GGEMSManager::GetInstance();
ggems_manager.SetOpenCLVerbose(true);
ggems_manager.SetNavigatorVerbose(true);
ggems_manager.SetSourceVerbose(true);
ggems_manager.SetMemoryRAMVerbose(true);

(continues on next page)

13.3. C++ 47

GGEMS, Release 1.0

(continued from previous page)

ggems_manager.SetProcessVerbose(true);
ggems_manager.SetRangeCutsVerbose(true);
ggems_manager.SetRandomVerbose(true);
ggems_manager.SetKernelVerbose(true);
ggems_manager.SetTrackingVerbose(true, 10);

ggems_manager.Initialize();
ggems_manager.Run();

The last step, exit GGEMS properly by cleaning OpenCL C++ singleton

opencl_manager.Clean();

48 Chapter 13. Make a GGEMS Project

CHAPTER

FOURTEEN

PORTABLE DOCUMENT

GGEMS documentation can be downloaded in PDF format from the following link:

GGEMS pdf

49

https://doc.ggems.fr/v1.0/ggems.pdf

	Introduction
	Requirements
	Operating Systems
	Python Version
	OpenCL Version
	Hardware

	Building & Installing
	Prerequisites
	GGEMS Installation

	Getting Started
	Navigators
	Systems
	Phantoms

	Dosimetry
	Physical Processes & Range cuts
	Physical Processes
	Range Cuts

	Sources
	X-ray Source

	GGEMS Commands
	Examples & Tools
	Example 0: Cross-Section Computation
	Example 1: Total Attenuation
	Example 2: CT Scanner
	Example 3: Voxelized Phantom Generator
	Example 4: Dosimetry

	Release Notes
	Supported and Tested Platforms
	What You Can Do in GGEMS
	Compilation Warnings
	GGEMS Software License

	GGEMS Design
	Make a GGEMS Project
	Template
	Python
	C++

	Portable Document

