GGEMS

version 1.1

GGEMS Collaboration

mai 12, 2021






Contents

Welcome to GGEMS Documentation
Introduction
Requirements
Operating Systems
Supported
Maybe Supported
Python Version
OpenCL Version
Hardware
Supported
Maybe Supported
Building & Installing
Prerequisites
NVIDIA
Linux & Windows
INTEL
Linux & Windows
AMD
Linux & Windows
GGEMS Installation
Linux
Windows
CMAKE Parameters
BUILD_EXAMPLES
CMAKE_INSTALL_PREFIX
DOSIMETRY_DOUBLE_PRECISION
GGEMS_PATH
MAXIMUM_PARTICLES
OPENCL_CACHE_KERNEL_COMPILATION
OPENCL_KERNEL_PATH
PYTHON_MODULE_PATH
Getting Started
Multi-Device
Navigators
Systems

Flat panel

Curved
Phantoms
World

Dosimetry

© 00 0 N N N N NN oo o o o o b~ BB W oWwwowwowoww N DNDNDDNDDNDDNDDNDNDNDDNDNDNNDNPRP P

[
m O O



Physical Processes & Range cuts

Physical Processes
Compton Scattering
Photoelectric Effect
Rayleigh Scattering
Process Parameters Building
Process Verbosity

Range Cuts

Sources

X-ray Source

GGEMS Commands

Examples & Tools

Examples 0: Cross-Section Computation
Examples 1: Total Attenuation

Examples 2: CT Scanner

Examples 3: Voxelized Phantom Generator
Examples 4: Dosimetry

Examples 5: World Tracking

Release Notes

Supported and Tested Platforms
What You Can Do in GGEMS
Compilation Warnings

GGEMS Software License

Change log

CMAKE
C++
GGEMS
Features

Examples

GGEMS Design
Make a GGEMS Project

Template
Python

C++

Portable Document

12
12
12
12
12
13
13
13
13
13
14
15
15
16
17
18
19
21
25
25
25
25
25
26
26
26
26
26
26
26
28
28
29
30
32



Welcome to GGEMS Documentation

Welcome to GGEMS Documentation

GGEMS is an advanced Monte Carlo simulation platform using CPU and GPU architecture targeting medical
applications (imaging and particle therapy). This code is based on the well-validated Geant4 physics model and
capable to be executed in both CPU and GPU devices using the OpenCL library.

This documentation is divided into three parts.

First, as preamble, an introduction to GGEMS and the informations are given in order to install your environment for
GGEMS.

Second, for a standard user, informations about all GGEMS potential are given.Examples and tools are also
illustrated and explained. And all the command lines are listed using both C++ and python instructions.

And finally, in the last part of this documentation, a more detailed description concerning GGEMS core for advanced
user. The purpose of this part is to give enough informations to an user to implement a custom part of code in
GGEMS.

Introduction

GGEMS (GPU Geant4-based Monte Carlo Simulations) is an advanced Monte Carlo simulation platform using the
OpenCL library managing CPU and GPU architecture. GGEMS is written in C++, and can be used using python
commands. The reader is assumed to have some basic knowledge of object-oriented programming using C++.

Well-validated Geant4 physic models are used in GGEMS and implemented using OpenCL.

The aim of GGEMS is to provide a fast simulation platform for imaging application and particle therapy. To favor
speed of computation, GGEMS is not a very generic platform as Geant4 or GATE. For very realistic simulation with
lot of information results, Geant4 and GATE are still recommended.

GGEMS features:

« Photon particle tracking
* Multithreaded CPU
* GPU
» Multi devices (GPUs+CPU) approach
« Single or double float precision for dosimetry application
 External X-ray source
« Navigation in simple box volume or voxelized volume
« Flat or curved detector for CBCT/CT application
GGEMS medical applications:
» CT/CBCT imaging (standard, dual-energy)
« External radiotherapy (IMRT and VMAT)
* Portal imaging from LINAC system
In the next GGEMS releases, the aim is to implement the following applications and features:
« Visualization
* Positron particle tracking
* Electron particle tracking
* Mesh volume
* Voxelized source
* PET imaging
* SPECT imaging

« Intra-operative radiotherapy (brachytherapy and intrabeam)


https://geant4.web.cern.ch
https://geant4.web.cern.ch
http://www.opengatecollaboration.org/

Requirements

* AMD architecture validation

* MacOS system validation

Requirements
GGEMS is a multiplatform application using OpenCL

Operating Systems

Supported

« Linux (Any distribution, Debian, Ubuntu, ...)
* Windows 10

Maybe Supported
GGEMS should work on a MacOS system, but this has not been tested

e MacOS X

Python Version
GGEMS supports the following version

* Python 3.6+

OpenCL Version

GGEMS validated using the following version

* OpenCL 1.2

Hardware

GGEMS can be used on lot of different hardwares such as CPU, GPU and graphic cards included in CPU (Intel HD
Graphics)

Supported

* Intel (CPU + HD Graphics)
* NVIDIA

Maybe Supported
GGEMS should work on the following hardware, but not tested yet

* AMD

Building & Installing

Note

GGEMS is written in C++ and using the OpenCL C++ API. However, the most useful GGEMS functions have
been wrapped to be called in python version 3. Python is not mandatory, GGEMS can be used only in C++ too.
Lot of C++ and python examples are given in this manual.


https://www.khronos.org/opencl

Requirements

Prerequisites

GGEMS code is based on the OpenCL library. For each platform (NVIDIA, Intel, AMD) in your computer, you have to
install a specific driver provided by the vendor.

NVIDIA

Linux & Windows

CUDA and NVIDIA driver have to be installed if you want to use GGEMS on a NVIDIA architecture. The easiest way
to install OpenCL on NVIDIA platform is to download CUDA and NVIDIA driver in the same time from the following
link: https://developer.nvidia.com/cuda-downloads.

GGEMS has been tested on the lastest CUDA and NVIDIA versions, and also some older versions.

Warning

CUDA is not used in GGEMS, but the OpenCL library file in included in CUDA folder.

Warning

It is recommanded to install CUDA and the NVIDIA driver directly from the NVIDIA website. Using packaging tool
(as apt) is very convenient but can produce some troubles during GGEMS executation.

INTEL

Linux & Windows

Using GGEMS on Intel architecture require Intel driver. More information about Intel SDK for OpenCL applications
can be find in the following link: https://software.intel.com/content/www/us/en/develop/tools/opencl-sdk.html. Both
drivers for Linux and Windows can be downloaded here:
https://software.intel.com/content/www/us/en/develop/articles/opencl-drivers.html

AMD

Linux & Windows

AMD platform has not be tested, but surely with few modifications GGEMS will run on a AMD platform. The correct
driver for CPU and/or GPU should be available on the following link: https://www.amd.com/en/support. Don't hesitate
to contact the GGEMS team if you need help for AMD implementation. For the next releases, AMD platform will be
tested and validated.

Important

All previous drivers have to be installed before to install GGEMS. Install NVIDIA driver before Intel driver is
recommanded, if using GGEMS on both architecture is required.

GGEMS Installation
CMAKE is required to install GGEMS. The minimal CMAKE version is 3.8.


https://developer.nvidia.com/cuda-downloads
https://software.intel.com/content/www/us/en/develop/tools/opencl-sdk.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-drivers.html
https://www.amd.com/en/support
https://cmake.org/

Requirements

Linux

Intel and/or NVIDIA drivers are supposed to be installed. Download GGEMS from the website, or from a terminal:

$ wget https://ggemns. fr/downl oad/ ggens_v1.0.zip

Unzip the downloaded file, create a folder named GGEMS_build (or another name), and launch the command
‘ccmake’. Create an install folder is recommanded.

unzip ggens_v1.0.zip
nkdi r GGEMS_bui | d
nkdi r GGEMS i nstal |
cd GGEMS build
ccnake ../ GGEMS

& BH BB P

BUILD_EX
CCACHE _F

DOSIMETRY_DOUB!
GGEMS_PATH L YOUR_PATH/GGENS
048576

ON
BIYOUR_PATH/GGEMS/src/kernels
B YOUR_PATH/GGEMS/py thon_module
eeeee

Note

By default, the GNU compiler is used on Linux. CLANG can also be used. The compiler can be modify in the
CMakelLists.txt file and empty the CMAKE cache.

In the previous images “'YOUR_PATH’ is automatically found by CMAKE. CMAKE parameters shown previously are
explained here. Last step, compile and install GGEMS.

$ make -j N
$ make install

Final step, configuration of your environment. There are many ways to do that. Since GGEMS is a library, you have
to indicate its location in your environment file (.bashrc for instance).

export LD LI BRARY PATH=$LD LI BRARY PATH: YOUR PATH GGEMS_ instal | /ggens/lib

To load permanently the GGEMS python module, we also recommand to add the following line in your environment
file

export PYTHONPATH=$PYTHONPATH: YOUR PATH GGEMS i nst al | / ggens/ pyt hon_nodul e
export PYTHONPATH=$PYTHONPATH: YOUR_PATH GCGEMS i nstal |l /ggens/lib

GGEMS is now installed on your system. To test the installation, try to launch GGEMS examples or load the GGEMS
python module from python console.

from ggens inport *

opencl _manager. print _i nfos()
opencl _manager . cl ean()
exit()

Windows

Note

The following installation process for Windows is done using the classical Windows command prompt. Visual
Studio is the compiler by default. CLANG can be selected by modifying the CMakeLists.txt file.



Requirements

Important

Only Visual Studio (CL) and CLANG are validated on Windows. GNU GCC is not recommanded.

Visual Studio is assumed well configured. The command ‘cl.exe’ should be recognize in your command prompt. If
not, there some useful commands to configure Visual Studio 2019 in a batch script file (named ‘set_compilers.bat’ for
instance). If a previous version of Visual Studio code is installed on your computed, you might modify this script.

@cho OFF
i f "9%CTOOLKI T_VARS_ARE _SET% == "true" goto done
echo --- Setting Mcrosoft Visual C++ Tool kit 2019 environnent variables... ---

call "C\ProgramFiles (x86)\M crosoft Visual Studio\2019\ Conmunity\VC Auxiliary\Build\vcvar

set PATH="%/CTool kitlnstall Di r% \ bi n; Y%PATHY%
set | NCLUDE="9%/CTool kitlnstall Dir%\incl ude; % NCLUDE%
set LIB="%/CTool kitlnstal I Dir%\Ilib; %I B%

set VCTOOLKI T_VARS ARE SET=true
echo Done.
: done

Calling the previous script typing the following command:

C.\ User s\ XXX> set conpil ers. bat

Download GGEMS from the website. Unzip GGEMS in your environment folder (for instance C:\Users\XXX). Then
create both GGEMS_build and GGEMS _install folder.

C.\ User s\ XXX> nd GGEMS buil d
C.\Users\ XXX> nd GGEMS install

Go to the build folder and launch CMAKE.

C:\ User s\ XXX> cd GGEMS_bui |l d
C:\ User s\ XXX\ GGEMS_bui | d> crake- gui

. e ——

Note

For multithreaded compilation it is recommanded to use Ninja generator and not nmake. Ninja can be install as a
package during visual studio installation or directly from here https://ninja-build.org/


https://ninja-build.org/

Requirements

Important

Order during installation of NVIDIA and Intel driver could be important. To check that, go to your environment
variables in PATH variable and check which OpenCL library is call first. NVIDIA OpenCL library should be called
first.

Final step, compilation and installation using nmake or ninja.
C. \ User s\ XXX\ GGEMS_bui | d> nmeke i nstal |
or

C. \ User s\ XXX\ GGEMS _bui l d> ninja install

GGEMS have to be set in your environment variables by creating (or add an entry) a PYTHONPATH variable and
add an entry to the PATH variable. The following batch script can do that for you in the command prompt.

@cho OFF
if "9%CEMS_VARS_ARE SET% == "true" goto done
echo --- Setting GGEMS... ---

set PYTHONPATH=%YTHONPATHY C:. \ User s\ XXX\ GGEMS_i nst al | \ ggens\ pyt hon_nodul e
set PYTHONPATH=%YTHONPATHY C: \ User s\ XXX\ GGEMS_i nstal | \ ggens\|ib
set PATH=%PATHY C:\ User s\ XXX\ GGEMS i nstal [\ ggens\Iib

set GGEMS _VARS ARE SET=true
echo Done.
: done

GGEMS is now installed on your system. To test the installation, try to launch GGEMS examples or load the GGEMS
python module from python console.

from ggens inport *

opencl _nmanager. print_infos()
opencl _nanager. cl ean()
exit()

CMAKE Parameters

BUILD_EXAMPLES

By default this option is set to ON. During the installation all C++ executables are copied to the respective example
folder.

CMAKE_INSTALL_PREFIX

Path to your installation folder

DOSIMETRY_DOUBLE_PRECISION

By default this option is set to ON. For dosimetry the computation are in double float precision.

GGEMS_PATH
Path found automatically by CMAKE. It corresponds to GGEMS source folder.

MAXIMUM_PARTICLES

By default the batch of maximum particles simulated by GGEMS is 1048576. This number can be higher depending
on your graphic cards.



Getting Started

OPENCL_CACHE_KERNEL_COMPILATION

By default this option is set to ON. It means the compiled OpenCL kernels are stored in the cache folder during the
compilation process. It's recommanded to set this option to OFF, if you want modify code inside an OpenCL kernel
and delete the OpenCL cache too.

OPENCL_KERNEL_PATH
Path to GGEMS OpenCL kernels. This path is automatically found by CMAKE.

PYTHON_MODULE_PATH
Path to GGEMS python module. This path is automatically found by CMAKE.

Getting Started

GGEMS can be called using a python console

$ python
Python 3.9.1 (tags/v3.9.1:1e5d33e, Dec 7 2020, 17:08:21) [MSC v. 1927 64 bit (AVD64)] on w n
Type "hel p", "copyright", "credits" or "license" for nore informtion

>>> from ggens inport *

>>> opencl _manager = GGEMSOpenCLManager ()
>>> opencl _manager. print _i nfos()

>>> opencl _manager. set _devi ce_i ndex(0)
>>> opencl _manager. cl ean()

>>> exit()

With the previous command lines, the user has the possibility checking which device is recognized by GGEMS. The
device 0 is selected.

Important

If an OpenCL device is missing, please check your installation driver for the missing device.

The best way learning how GGEMS is working, is to try each example available in the example folders. Using
GGEMS, for a personnal project, from scratch, using python or C++ is explained in the developer part.

Multi-Device
GGEMS can be used on multi-devices using OpenCL library. Two different ways are implemented to activate device:

* Device can he selected usina device index

opencl _manager = GGEMSOpenCLManager ()
opencl _manager . set _devi ce_i ndex(0) # Activate device id O
opencl _manager. set _device_i ndex(2) # Activate device id 2, if it exists

e Device can he selected 11sina a strina for a list of devices
opencl _nanager = GGEMSOpenCLManager ()

opencl _nanager.set _device to_activate('gpu', 'nvidia') # Activate all NvID A GPU only
opencl _nanager.set _device to_activate('gpu', 'intel') # Activate all Intel GPU only
opencl _nanager.set _device to_activate('gpu', 'and') # Activate all AVD GPU only

opencl _nanager.set _device to activate('all') # Activate all found devices
opencl nanager.set _device to _activate('0;2') # Activate devices 0 and 2

Navigators

The particles are only tracked in navigator volumes. There are two types of navigators in GGEMS:



Getting Started

« System (detector)

* Phantom (object, patient)
For each navigator, three elements are associated:

« a solid: geometry of the navigator
« a list of materials

* physical processes

Systems

In GGEMS, only CT/CBCT system is available for moment. This detector is composed by pixels arranged in
modules. The following figure shows the reference axis of CT/CBCT system.

World

CBCT system

A CT/CBCT system is created using the following line:
cbct _system = GGEMSCTSyst en(' det ector')

Types of CT/CBCT detector are:

« flat panel

e curved

Flat panel
This type of geometry is well adapted for CBCT configuration.
cbct _systemset ct _type('flat')



Getting Started

Source detector distance (SDD)

-
® o
Source Isocenter

< ——
Source isocenter distance (SID)

Flat panel detector

Curved

This type of geometry is well adapted for CT configuration.

cbct _system set _ct_type(' curved')

Source detector distance (SDD)

-
® o
Source Isocenter
- >

Source isocenter distance (SID)

Curved detector

Note

Pixel size Y

Pixel size Y

=

Pixel size X
=)

21 = Al2xid N

[

N pixel X = 12

N module X =1

Pixel size X
=)

N pixel X = 12

N module X = 1

A [2x1d N

¥ =

A 2[Npow [\

I=

_

A 2|npowi N

€=

For curved geometry, the angle between modules is automatically computed. The center of rotation is the source

position, and there is no gap between modules.

For each type of detector, number of modules, number of detection elements within module and their sizes are set as

following:

cbct _system set nunber _of nodul es(1, 3)

cbct _system set nunber of detection_elenents(12, 4, 1)
cbct _system set _size of detection_elenents(1.0, 1.0, 1.0,

Detector can be composed by one type of material:

)



World

cbct _system set _material (' GOS')

And a threshold can be applyied specifically to the detector:

cbct _system set threshol d(10.0, 'keV')

Source isocenter distance (SID) and source detector distance (SDD) is set with the following commands:

cbct _system set _source_detector _distance(1085.6, 'mi)
cbct _system set _source_i socenter_di stance(595.0, 'mi)

The CT/CBCT system can be rotated around world axis as following:
cbct _systemset _rotation(0.0, 0.0, 0.0, 'deg')
Final projection is saved in a MHD file and scatter registration can be activated:

cbct _system save(' projection')
cbct _system store_scatter(True)

Phantoms

In GGEMS, a voxelized phantom is the only available type of phantom. This phantom is defined in a mhd file and a
range data file, storing all label data. The reference axis of the phantom are the same than the global world volume

World

Isocenter
(0,0,0) mm

Vs EE e s e e e e e e e e e ...

. Phantom

First a phantom is created by choosing a name, and loading a mhd file and a range data file:

phant om = GGEMSVoxel i zedPhant on(' phant oni)
phant om set _phant om(' phant om mhd', 'range_phantomtxt')

The user can set a position and a rotation applyied to the phantom using the following commands:

phantom set _rotation(0.0, 0.0, 0.0, 'deg')
phantom set position(0.0, 0.0, 0.0, 'nmm)

World

Outside navigator, particle are not tracked. However, a tool has been developped in GGEMSWorld class storing
particle data (photon tracking, energy/energy squared voxel in world, and momentum) outside navigator. Particles
are projected in GGEMSWorld using a DDA algorithm.

The world module is ‘GGEMSWorld’:

10



Dosimetry

worl d = GGEVMSWIr | d()

After creating the GGEMSWorld object, the dimension of the world and size of voxel can be set:

wor | d. set _di mensi ons(200, 200, 200)
wor | d. set _el enent _si zes(10.0, 10.0, 10.0, 'nmm)

For world output, there are many informations the user can save such as: energy and energy squared of photon
crossing voxel, photon momentum and fluence (photon tracking):

wor | d. set _out put _basenane(' data/worl d')
wor | d. energy_t racki ng(True)

wor | d. ener gy_squar ed_t racki ng( True)
wor | d. monent un( Tr ue)

wor | d. phot on_t racki ng( Tr ue)

Dosimetry

During GGEMS simulation, a photon dosimetry module can be activated to compute absorbed dose in a specific
phantom.

Note

Only photon are simulated in the current version of GGEMS. In next releases electron will be implemented.

The dosimetry module is ‘GGEMSDosimetryCalculator’:
dosi netry = GGEMSDosi netryCal cul at or ()

After creating the GGEMSDosimetryCalculator object, a navigator is attached:

dosinetry. attach_to_navi gat or (' phant om)

The size of voxel in dosimetry image (dosel) can be set. If not set the dosel size is the same than voxel phantom
size:

dosi netry. set _dosel _size(0.5, 0.5, 0.5, 'nmm)

The absorbed dose is computed in gray (Gy). By default the dose in computed using materials in phantom.
Otherwize the user can set water material everywhere in phantom.

dosi netry. water _reference(True)

A custom threshold can be set on density. If density of phantom is below the threshold the dose value in 0.
dosinetry. m ni numdensity(0.1, 'g/cnB')

For dose output, there are many informations the user can save such as: uncertainty value of the dose, the
deposited energy in dosel, the squared of deposited energy in dosel and the number of interaction (hit) in dosel:

dosi metry. set _out put (' dat a/ dosi netry')
dosi metry. uncertai nty(True)

dosi metry. edep( Tr ue)

dosi metry. hit(True)

dosi netry. edep_squar ed( Tr ue)

There is a special output named ‘photon tracking’. This output registers the number of photons crossing a dosel. To
use this option, the size of dosel has to be the same than the phantom voxel size, otherwize GGEMS will throw an
error:

dosi netry. phot on_tracki ng( Tr ue)

11



Physical Processes & Range cuts

Physical Processes & Range cuts

Physical Processes

The photon processes impletemented are:

» Compton scattering
* Photoelectric effect

¢ Rayleigh scattering

Each of these processes are extracted from Geant4 version 10.6. For more information about physics, please read
the documentation on the Geant4 website.

By using python, the variable ‘processes_manager’ can be called to manage processes.

Important

Secondary particles (photon and electron) are not simulated yet. For Photoelectric effect, the photon is killed
during the interaction and the energy is locally deposited, and the fluorescence photon is not emitted.

Compton Scattering

The Geant4 model extracted is the ‘G4KleinNishinaCompton’ standard model. It is the fastest algorithm to simulate
this process. Compton scattering is activated for all the navigators, or for a specific navigator.

processes_nmanager . add_process(' Conpton', 'gamm', "all')

In the previous line, Compton scattering is activated for all the navigators.

processes_nanager. add _process(' Conpton', 'gamma', 'my_phant oni)

In the previous line, Compton scattering is activated only for a navigator named ‘my_phantom'.

Photoelectric Effect

The Geant4 model extracted is the ‘G4PhotoElectricEffect’ standard model using Sandia tables. Photoelectric effect
is activated for all the navigators, or for a specific navigator.

processes_nmanager . add_process(' Photoel ectric', 'ganmm', 'all')

In the previous line, Photoelectric effect is activated for all the navigators.

processes_nanager. add_process(' Photoel ectric', 'gamm', 'ny_phantoni)

In the previous line, Photoelectric effect is activated only for a navigator named ‘my_phantom’

Rayleigh Scattering

The Geant4 model extracted is the ‘G4LivermoreRayleighModel’ livermore model. Rayleigh scattering is activated for
all the navigators, or for a specific navigator.

processes_nanager. add_process(' Rayleigh', 'gamm', 'all")
In the previous line, Rayleigh scattering is activated for all the navigators.

processes_nanager. add _process(' Rayl eigh', 'ganmm', 'ny_phantom)

In the previous line, Rayleigh scattering is activated only for a navigator named ‘my_phantom’

12



Sources

Process Parameters Building

The cross-sections are computed during the GGEMS initialization step. The parameters used for the cross-sections
building can be customized by the user, however it is recommanded to use the default parameters. The customizable
parameters are:

* Minimum energy of cross-section table
« Maximum energy of cross-section table

* Number of bins in cross-section table
The default parameters are defined as following:

processes_nanager.set _cross_section_tabl e_nunber _of _bi ns(220)
processes_nanager.set _cross_section_table_energy_mn(1.0, 'keV)
processes_nanager.set _cross_section_tabl e_energy_nmax(1.0, 'MV )

Process Verbosity

Informations about processes can be printed by GGEMS:

 Available processes
 Global informations about processes

» Cross-section value in tables
The list of commands are:

processes_nanager. print _avail abl e_processes()
processes_nanager. print _i nfos()
processes_nmnager. print_tabl es(True)

Range Cuts

The cuts are defined for each particle in distance unit in all navigator or a specific navigator. During the GGEMS
initialization the cuts are converted in energy for each defined material in navigator. If the particle energy is below the
cut, then the particle is killed and the energy locally deposited. By default the cuts are 1 micron.

range_cuts_manager.set _cut('gama’', 0.1, 'nmm, "all')
In the previous line, cuts are activated for photon for all navigators.
range_cuts_nmnager.set _cut('gama', 0.1, 'nm, 'nmy_phantoni)

In the previous line, cuts are activated for photon for a navigator named ‘my_phantom’.

Sources

The source strategy in GGEMS is to develop a optimized source for each application. For moment, only CT/CBCT
application is developed so the source type available is a cone-beam X-ray source.

X-ray Source

X-ray source is defined as a cone-beam geometry. The direction of the generated particles point always to the center
of the world. This source has its own axis as defined in the image below:

13



GGEMS Commands

World

Isocenter
(0,0,0) mm

Source Axis

Some commands are provided managing a X-ray source.

First, the user has to create source by choosing a hame:
Xray source = GGEMSXRaySource(' xray source')

The particle type is only photon and can be selected with the following command:
Xray_source. set_source_particle_type(' ganmma')

The number of generated particles during the run is defined by the user:

Xray_source. set _number of particl es(1000000000)

The position and rotation of the source are defined in the global world reference axis and the cone-beam source is
defined with an aperture angle.

Xray_source.set position(-595.0, 0.0, 0.0, '"mi)
Xray_source.set _rotation(0.0, 0.0, 0.0, 'deg')
Xray_source.set beam aperture(12.5, 'deg')

A X-ray source is defined with a focal spot size. If defined at (0, 0, 0) mm, it is similar to a point source, otherwize it is
a more realistic X-ray source with a small rectangular surface defined in source axis reference:

Xxray_source. set _focal _spot_size(0.0, 0.0, 0.0, 'nm)

Important
The focal spot size is defined in source axis reference and not in global world reference!!!

The energy source can be defined using a single energy value or a spectrum included in a text file.

Xray_source. set _pol yenergy(' dat a/ spectrum 120kVp_2nmAl . dat ')
# OR
Xray_source. set _nmonoenergy(25.0, 'keV)

GGEMS Commands

The main steps in GGEMS are initialize and run methods.

14



Examples & Tools

ggens = GCGEMS()
ggens.initialize()
ggens. run()

Different useful information output are available for the user during GGEMS executions.
To print all informations about OpenCL device:

ggens. opencl _ver bose(True)

To print all informations about material database:

ggens. mat eri al _dat abase_ver bose( Tr ue)

To print all information about navigator (system + phantom):

ggens. navi gat or _ver bose( Tr ue)

To print all informations about source:

ggens. source_ver bose( True)

To print all informations about allocated memory:

ggens. menory_ver bose( Tr ue)

To print all informations about activated processes:

ggens. process_ver bose( Tr ue)

To print all informations about range cuts:

ggens. range_cuts_verbose(True)

To print seed and state of the random:

ggens. random ver bose( Tr ue)

To print profiler data (elapsed time in OpenCL kernels):

ggens. profiling_verbose(True)

To print tracking informations about a specific particle index:

ggens. tracki ng_verbose(True, 12)

Cleaning GGEMS object
ggens. del et e()

Examples & Tools

A list of examples and tools are provided for GGEMS users. Only python instructions are given. For C++, a
CMakelists.txt file is mandatory for compilation.

Note

Examples are compiled and installed when the compilation option ‘BUILD_EXAMPLES’ is set to ON. C++
executables are installed in example folders.

Examples 0: Cross-Section Computation

The purpose of this example is to provide a tool computing cross-section for a specific material and a specific photon
physical process. The energy (in MeV) and the OpenCL device are set by the user.

15



Examples & Tools

$ python cross_sections.py [-h] [-d DEVICE] [-m MATERI AL] -p [PROCESS]-e [ENERGY] [-v VERBCE

-h/--help Printing help into the screen

-d/ --device Setting OpenCL id

-nml --materi al Setting one of material defined in GGEMS (Water, Air, ...)

- p/ - - process Setting photon physical process (Conpton, Rayleigh, Photoelectric)
-el --energy Setting photon energy in MV

-v/ --verbose Setting |level of verbosity

The macro is in the file ‘cross_section.py’.

Verbosity level is defined in the range [0;3]. For a silent GGEMS execution, the level is set to 0, otherwise 3 for lot of
informations.

GGEMSVer bosi ty(verbosity | evel)

opencl _nanager. set _devi ce_i ndex(devi ce_i d)

GGEMSMaterial object is created, and each new material can be added. The initialization step is mandatory and
compute all physical tables, and store them on an OpenCL device.

materials = GGEMSMat eri al s()
mat eri al s. add_materi al (naterial _nane)
materials.initialize()

Before using a physical process, GGEMSCrossSection object is created. Then each process can be added
individually. And finally cross sections are computing by giving the list of materials.

cross_sections = GGEMSCrossSecti ons()
cross_sections. add_process(process_nane, 'ganma')
cross_sections.initialize(materials)

Getting the cross section value (in cm2.g-1) for a specific energy (in MeV) is done by the following command:

cross_sections.get _cs(process _name, material nane, energy MV, 'MV )

Examples 1: Total Attenuation

Warning

This example is only available using python and the matplotlib library is mandatory.

This example is a tool for plotting the total attenuation of a material for energy between 0.01 MeV and 1 MeV. The
commands are similar to example 0, and all physical processes are activated.

$ python total attenuation.py [-h] [-d DEVICE] [-m MATERI AL] [-v VERBCSE]

-h/--hel p Printing help into the screen

-d/ --devi ce Setting OpenCL id

-m--materi al Setting one of material defined in GGEMS (Water, Air, ...)
-v/--verbose Setting | evel of verbosity

Total attenuations for Water and LSO are shown below:

16



Examples & Tools

Water Total Attenuation

Cross Section [cm2.g-1]

Photoelectric
Rayleigh
—— Total Attenuation

102
Photon Energy [keV]

=
o
o
€
S
<
S
k]
@
n
@
]
o
(s}

10?
Photon Energy [keV]

Examples 2: CT Scanner

In this CT scanner example, a water box is simulated associated to a CT curved detector. Only one projection is
computed simulating 1e9 particles.

$ python ct_scanner.py [-h] [-d DEVICE] [-b BALANCE] [-n N_PARTICLES] [-s SEED] [-v VERBCOSE]

-h/--help
-d/ --devi ce

-b/ --bal ance

-n/--nparticles

-s/ --seed

-v/ --verbose

Printing help into the screen

OpenCL device (all, cpu, gpu, gpu_nvidia, gpu_intel, gpu_and,
using all gpu: -d gpu
usi ng device index 0 and 2: -d "O0;2"

Bal ance conputati on for
60% comput ati on on device 0 and 40% conputati o on device 2
Nunber of particles (default: 1000000)
Seed of pseudo generator nunber (default:
Setting |level of verbosity

-b

777)

The water box phantom is loaded:

phant om = GGEMSVoxel i zedPhant on( " phant oni )

phant om set _phant on(' dat a/ phant om nmhd",
phant om set _
phant om set _

' dat a/ range_phantom t xt"')
'deg')
] mﬂ )

rotation(0.0, 0.0, 0.0,
position(0.0, 0.0, 0.0,

Then CT curved detector is built:

ct _detector

ct _detector.

ct _detector

ct _detector

ct _detector

ct _detector

17

= GGEMSCTSystem(' Stellar')
set _ct_type(' curved')

.set _nunber_of nodul es(1, 46)
ct _detector.
ct _detector.
.set_material (' GOS'")
ct _detector.
ct _detector.
.set _rotation(0.0, 0.0, 0.0,
ct _detector.
ct _detector.

set _nunber _of detection_el enents(64, 16, 1)
set _size_of detection_elenents(0.6, 0.6, 0.6, 'nm)
set _source_detect or_di stance(1085. 6,
set _source_i socenter _di stance(595. 0,
" deg')

)
)

set _threshol d(10.0, 'keV')
save(' data/ projection')

.Store_scatter(True)

"X Y, Z". ..

device if many devices are selected "X Y, Z"

"0.6;0.4"



Examples & Tools

Initialization of cone-beam X-ray source:

poi nt _source = GGEMSXRaySour ce(' poi nt_source')

poi nt _source. set_source_particle_type(' gamm')

poi nt _sour ce. set _nunber _of particl es(1000000000)

poi nt _source. set_position(-595.0, 0.0, 0.0, 'nmm)

poi nt _source.set_rotation(0.0, 0.0, 0.0, 'deg")

poi nt _source. set _beam aperture(12.5, 'deg')

poi nt _source. set _focal _spot_size(0.0, 0.0, 0.0, 'nm)

poi nt _source. set _pol yener gy(' dat a/ spectrum 120kVp_2mAl . dat ')

|
Performance:
Device Computation Time [s]
GeForce GTX 1050 Ti 128
GeForce GTX 980 Ti 52
Quadro P400 404
Xeon X-2245 8 cores / 16 threads 132

Examples 3: Voxelized Phantom Generator

A tool creating voxelized phantom is provided by GGEMS. Only basic shapes are available such as tube, box and
sphere. The output format is MHD, and the range material data file is created in same time than the voxelized
volume.

$ python generate_volune.py [-h] [-d DEVICE] [-v VERBOSE]

-h/--hel p Printing help into the screen
-d/ --devi ce Setting OpenCL id
-v/ --verbose Setting |level of verbosity

First step is to create global volume storing all other voxelized objets. Dimension, voxel size, name of output volume,
format data type and material are defined.

vol une_cr eat or _manager . set _di nensi ons(450, 450, 450)

vol une_creat or _manager. set _el enent _si zes(0.5, 0.5, 0.5, "mfi)
vol une_cr eat or _manager. set _out put (' dat a/ vol une')

vol une_creat or _manager. set _range_out put (' dat a/ range_vol une')
vol une_creat or _manager.set_material (" Ar')

vol une_creat or _manager. set _data type(' MET_| NT")

vol une_creator _manager.initialize()

Then a voxelized volume can be drawn in the global volume. A box object is built with the command lines below:

box = GGEMSBox(24.0, 36.0, 56.0, 'mm)
box. set _position(-70.0, -30.0, 10.0, 'mmi)
box. set _| abel _val ue(1)

box. set _material (' VWater')

box.initialize()

18




Examples & Tools

box. draw()
box. del et e()

Examples 4: Dosimetry

In dosimetry example, a cylinder is simulated computing absorbed dose inside it. Different results such as dose,
energy deposited... can be plotted. An external source, using GGEMS X-ray source is simulated generating 2e8

particles.

$ python dosinetry_photon.py [-h] [-d DEVICE] [-b BALANCE] [-n N_PARTICLES] [-s SEED] [-v VE
-h/--help Printing help into the screen

-d/ --device OpenCL device (all, cpu, gpu, gpu_nvidia, gpu_intel,

using all gpu: -d gpu
usi ng device index 0 and 2: -d "O0;2"

-b "0.6;0. 4"

- b/ - - bal ance Bal ance conputation for device if many devices are selected "X Y; Z"
60% conput ati on on device 0 and 40% conputati o on device 2:

-n/--nparticles Nunber of particles (default: 1000000)

-s/--seed Seed of pseudo generator nunber (default: 777)

-v/ --verbose Setting |level of verbosity

First, the cylinder phantom is loaded:

phant om = GGEMSVoxel i zedPhant on(' phant oni)

phant om set phant on{' dat a/ phant om nmhd', 'data/range_phantomtxt"')
phantom set _rotation(0.0, 0.0, 0.0, 'deg')

phantom set _position(0.0, 0.0, 0.0, 'nmm)

Then dosimetry object is associated to the previous phantom, storing all data during particle tracking:

dosi metry = GGEMSDosi et ryCal cul at or (' phant on )
dosi netry. set _out put (' data/dosinmetry")

dosi netry. set _dosel _size(0.5, 0.5, 0.5, 'nmm)
dosi netry. wat er _reference(Fal se)

dosi netry. m ni numdensity(0.1, 'g/cnB')

dosi netry. uncertai nty(True)

dosi netry. phot on_tracki ng( True)

dosi netry. edep(True)

dosinetry. hit(True)

dosi netry. edep_squar ed( Tr ue)

And finally an external source using GGEMSXRaySource is created:

poi nt _source = GGEMSXRaySour ce(' poi nt_source')

poi nt _source. set_source_particle_type(' gamm')

poi nt _source. set _nunber_of particl es(200000000)

poi nt _source. set_position(-595.0, 0.0, 0.0, 'nmm)

poi nt _source.set_rotation(0.0, 0.0, 0.0, 'deg")

poi nt _source. set _beam aperture(5.0, 'deg')

poi nt _source. set _focal _spot_size(0.0, 0.0, 0.0, 'nm)

poi nt _source. set _pol yener gy(' dat a/ spectrum 120kVp_2mAl . dat ')

19



Examples & Tools

Dose absorbed by cylinder phantom

Uncertainty dose computation

20



Examples & Tools

Photon tracking in phantom

Performance:
Device Computation Time [s]
GeForce GTX 1050 Ti 253
GeForce GTX 980 Ti 65
Quadro P400 1228
Xeon X-2245 8 cores / 16 threads 570

Examples 5: World Tracking

In world tracking example, a cylinder is simulated computing absorbed dose inside it, a CBCT flat panel detector is
also defined storing photon count. And finally a world is defined in order to store the fluence outside cylinder
phantom and detector. An external source, using GGEMS X-ray source is simulated generating 1e8 particles.

$ python world_tracking.py [-h] [-d DEVICE] [-b BALANCE] [-n N_PARTICLES] [-s SEED] [-v VERE

-h/--help
-d/ --device

- b/ - -bal ance
-n/--nparticles

-s/--seed
-v/ --verbose

Printing help into the screen

OpenCL device (all, cpu, gpu, gpu_nvidia, gpu_intel, gpu_and, "XY;Z"..
using all gpu: -d gpu

usi ng device index 0 and 2: -d "0;2"

Bal ance conputation for device if many devices are selected "X Y; Z"

60% conput ati on on device 0 and 40% conputati o on device 2: -b "0.6;0.4"
Nunber of particles (default: 1000000)

Seed of pseudo generator nunber (default: 777)

Setting |level of verbosity

First the world is defined, and all output are generated

wor |l d = GGEVMSWOr | d()

wor | d. set _di mensi ons(200, 200, 200)
wor | d. set _el enent _si zes(10.0, 10.0, 10.0, 'nmm)
wor | d. set _out put _basenane(' data/worl d")

wor | d. energy_t racki ng(True)
wor | d. ener gy_squar ed_t racki ng( Tr ue)

wor | d. monent un( Tr ue)

wor | d. phot on_t racki ng( Tr ue)

21



Examples & Tools

The created cylinder phantom is loaded and dosimetry module is associated to the cylinder phantom, and all output
are activated

phant om = GGEMSVoxel i zedPhant on(' phant oni)
phant om set _phant on{' dat a/ phant om nmhd', ' data/range_phantomtxt')
phantom set _rotation(0.0, 0.0, 0.0, 'deg')
phant om set _position(0.0, 0.0, 0.0, 'nmm)

dosi netry = GGEMSDosi netryCal cul at or ()
dosinetry. attach_t o_navi gat or (' phant om )

dosi netry. set _out put _basenane(' dat a/ dosi netry')
dosinetry. set _dosel _size(1.0, 1.0, 1.0, 'nm)
dosi netry. wat er _reference(Fal se)

dosinetry. m ni numdensity(0.1, 'g/cnB")

dosi netry. uncertai nty(True)
dosi netry. phot on_tracki ng( True)
dosi netry. edep( True)

dosinetry. hit(True)

dosi netry. edep_squar ed( Tr ue)

A CBCT flat panel detector is built

cbct _detector = GGEMSCTSyst en(' custoni)

cbct _detector.set _ct _type('flat")

cbct _detector.set _nunber_ of nodul es(1, 1)

cbct _detector.set nunber_ of detection_el ements(400, 400, 1)
cbct _detector.set _size of detection_elenents(1.0, 1.0, 10.0, 'nmm)
cbct _detector.set _material ('Silicon')

cbct _detector.set_source_detector_di stance(1500.0, 'nmm)
cbct _detector.set_source_isocenter_distance(900.0, 'nm)
cbct _detector.set _rotation(0.0, 0.0, 0.0, 'deg')

cbct _detector.set _threshol d(10.0, 'keV')

cbct _detector. save(' data/ projection.nmhd")

And finally an external source using GGEMSXRaySource is created:

poi nt _source = GGEMSXRaySour ce(' poi nt _source')

poi nt _source. set_source_particle_type(' gamma')

poi nt _source. set _nunber _of particl es(100000000)

poi nt _source. set_position(-900.0, 0.0, 0.0, 'nmm)

poi nt _source.set _rotation(0.0, 0.0, 0.0, 'deg")

poi nt _source. set _beam aperture(12.0, 'deg')

poi nt _source. set _focal spot_size(0.0, 0.0, 0.0, 'nm)
poi nt _source. set _nmonoener gy(60.0, 'keV')

22



Examples & Tools

Dose absorbed by cylinder phantom

Photon tracking in phantom

23



Examples & Tools

Cylinder projection on flat panel detector

World photon tracking

Performance:
Device Computation Time [s]
GeForce GTX 1050 Ti 363
GeForce GTX 980 Ti 390
Quadro P400 908
Xeon X-2245 8 cores / 16 threads 284

24



Release Notes

Release Notes

Supported and Tested Platforms

GGEMS has been tested only on 64 bits architecture.
Platforms:
Linux: gcc-9.3, clang-11
Windows: Visual C++ 19.28 (Visual Studio 2019), clang-11
More verified and tested configurations:
Linux: gcc-7.5, clang-9/10
Windows: clang-9/10
OpenCL devices:
Intel
Xeon E5-2680, Xeon W-2245
HD Graphics 530
NVIDIA
Quadro P400, P2000

GeForce GTX 980 Ti, 1050 Ti, 1080 Ti

What You Can Do in GGEMS

Applications:
CT and CBCT systems
Photon dosimetry
Sources:
X-ray source using spectrum
Point source and rectangular source derived for X-ray source
Volume:
Voxelized phantom
Physical processes:
Compton scattering
Rayleigh scattering
Photoelectric effect
Particles:
Photon
Output:
Raw file

MHD file

Compilation Warnings

There may be a few compilation warnings on some platforms, particularly on MacOS, where GGEMS has not been
tested.

GGEMS Software License

A Software License applies to the GGEMS code. Users must accept this license in order to use it. The details and
the list of copyright holders is available at https://ggems.fr/about and also in the text file LICENSE distributed with the
source code.

25


https://ggems.fr/about

Change log

Change log

CMAKE

» Example are now installed in GGEMS install path
C++

» Smart pointers removed and replaced by classic ‘new’ and ‘delete’ methods.

» For Windows user, options application can be handled by methods defined in GGEMSWinGetOpt.

GGEMS

* New classes GGEMSProfilerManager, GGEMSProfiler and GGEMSProfilerltem can be used to display details
about elapsed time in OpenCL kernels.

* GGEMS can be run on multi-devices GPU and/or CPU.

« A new method in C++ and python handles the balance computation between each device.
* In GGEMSOpenCLManager, ‘clean’ method cleans all GGEMS C++ singletons.

« MHD file suffix is checked at the beginning of simulation.

* New OpenCL kernel ‘is_alive’ checks if particles are alive after each batch

 Problem reading material file on Linux windows is fixed

« C++ Singleton GGEMSManager is deleted and replaced by GGEMS class

« A security has been added to prevent infinite loop during tracking

Features

« For CT application, scatter histogram can be saved.

* New class GGEMSWorld stores data (fluence (photon tracking), energy deposit, energy deposite squared and
momentum) outside navigator (phantom and detector).

Examples

* New example 5_World_Tracking illustrating new GGEMSWorld feature

GGEMS Design

The GGEMSManager class has two important steps:

« Initialization

* Running
The following schemes summarize these steps.

26



Change log

27

INITIALIZATION STEP

Checking if OpenCL device selected

YES

Checking if list of materials is loaded

YES

Initialization of source(s)

Initialization of random engine
Ranging particles in batchs
Loading source parameters

Initialization of navigator(s)

For each navigator (system + phantom)

Loading materials

Loading solid volume

Computing and loading physic processes
Setting range cuts

J%

STOP

.




Make a GGEMS Project

RUNNING

N sources

N batchs | <«

v
I I

I Generating particles I

<+

—> I Finding closest navigator I

P —

YES
I Projecting particles to closest navigator I YES

YES

v

I Tracking particles within navigator I

\

—— | Particles alive ?

lNO

NO

v

New source ?

NO

v

Make a GGEMS Project

GGEMS is designed as a library, and can be called using either python or C++. The performance are the same.

Template
GGEMS (C++ or python) macros are writting following this template:

28



Make a GGEMS Project

| Import GGEMS Library | I Mandatory Step I

Optional Step

Passing Arguments

GGEMS Verbosity

By default, level of verbosity is 0

| Selecting an OpenCL device |

Loading Materials
Creating Phantom

In GGEMS, only voxelized phantoms are available. In
future releases, new phantom types could be

g

a| 8

3 3

@ 2

LN -

S| 3
Q

Dosimetry (computing dose, energy deposit, photon
tracking) is associated to a phantom, so this has to
be created after phantom. For imagery application,
dosimetry is optional, unless the dose within the
phantom is needed.

System

In the current GGEMS version, CT
and CBCT systems are available.

Physics

Activating physical processes for photon:
Compton and/or Photoelectric and/or
Rayleigh

Cut is defined in distance for photon and
associated to a phantom. By default cut is
Imm

Source

For moment only Cone-beam X-ray source is
defined. This source is very generic and can be
used as a point source, linear source ...

GGEMS

Python

Before using python and GGEMS, check GGEMS ‘python_module’ is in your PYTHONPATH variable.
PYTHONPATH has to point to the GGEMS library too.

Using GGEMS with python is very simple. A folder storing the project should be created. Inside this folder, write a
python file importing GGEMS.

from ggens inport *

Verbosity level is defined in the range [0;3]. For a silent GGEMS execution, the level is set to 0, otherwise 3 for lot of
informations.

GGEMSVer bosi t y(0)

Next step, an OpenCL device is selected.
opencl _nanager. set devi ce_i ndex(0)

Then a material database has to be loaded in GGEMS. The material file provided by GGEMS is in ‘data’ folder. This
file can be copy and paste in your project, and a new material can be added.

mat eri al s_dat abase_nanager.set_material s(' materials.txt")

The physical tables can be customized by changing the number of bins and the energy range. The following values
are the default values.

processes_manager . set _cross_secti on_t abl e_nunber _of _bi ns(220)
processes_manager . set _cross_section_table _energy mn(1.0, 'keV)
processes_nmnager.set _cross_section_tabl e_energy_nax(10.0, 'MV)

The photon physical processes are selecting using the process name, the concerning particle and the associated
phantom (or ‘all’ for all defined phantoms).

processes_nanager. add_process(' Conpton', 'gamm', "all')
processes_nanager. add_process(' Photoel ectric', 'gamm', "all"')
processes_nanager. add _process(' Rayleigh', '"gamma', '"all")

29



Make a GGEMS Project

Range cuts are defined in distance, particle type has to be specified and cuts are associated to a phantom (or ‘all’ for
all defined phantoms). The distance is converted in energy during the initialization step. During the particle tracking, if
the energy particle is below to the cut the patrticle is killed and the energy is locally deposited.

range_cuts_manager.set _cut('gamm', 0.1, 'nmm, "all')

GGEMS is called in python using the ‘ggems_manager’ variable. All verboses can be set to ‘True’ or ‘False’
depending on the amount of details the user needs. In ‘tracking_verbose’, the second parameters is the index of
particle to track. All objects in GGEMS are initialized with the method ‘initialize’. The GGEMS simulations starts with
the method ‘run’.

ggens = GGEMS()

ggens. opencl _verbose( True)
ggens. mat eri al _dat abase_ver bose( Tr ue)
ggens. navi gat or _ver bose( True)
ggens. source_ver bose( True)
ggens. menory_ver bose( True)
ggens. process_ver bose( Tr ue)
ggens. range_cuts_verbose(True)
ggens. random ver bose( Tr ue)
ggens. profiling_verbose(True)
ggens. tracki ng_verbose(True, 0)

ggens.initialize()
ggens. run()

The last step, exit GGEMS properly by cleaning OpenCL:

ggens. del et e()
opencl _manager . cl ean()
exit()

C++

Building a project from scratch using GGEMS library in C++ is a little more difficult. A small example is given using
CMake.

Create a project folder (named ‘my_project’ for instance), then ‘include’ and ‘src’ folder can be created if custom C++
classes are written. A file named ‘main.cc’ is created for this example and ‘CMakelLists.txt’ file is also created. At this
stage, the folder structure is:

<ny_pr oj ect >

| -- include\

| -- src\

| -- main.cc

| -- CMbakelists.txt

Compiling this project can be done using the following ‘CMakeLists.txt’ example:
CMAKE_M NI MUM_REQUI RED( VERSI ON 3. 13 FATAL_ERROR)

SET(ENV{ CC} "cl ang")
SET(ENV{ CXX} "cl ang++")

PROJECT( MYPRQJECT LANGUAGES CXX)
FI ND_PACKAGE( OpenCL REQUI RED)

SET( GGEMS_I NCLUDE_DI RS "" CACHE PATH "Path to the GGEMS include directory")
SET( GGEMS_LI BRARY "" CACHE FI LEPATH "GGEMS | i brary")

| NCLUDE_DI RECTORI ES( ${ PROJECT_SOURCE_DI R}/ i ncl ude ${ GGEMS_| NCLUDE_DI RS})
| NCLUDE_DI RECTORI ES( SYSTEM ${ OpenCL_| NCLUDE_DI RS})

30



Make a GGEMS Project

LI NK_DI RECTORI ES( ${ OpenCL_LI BRARY})
FI LE(GLOB source ${PRQIECT SOURCE DIR}/src/*.cc)

ADD _EXECUTABLE(mmy_project main.cc ${source})
TARGET_LI NK_ LI BRARI ES(my_proj ect ${ OpenCL_L| BRARY} ${ GGEMS_L| BRARY})

In main.cc file, GGEMS files are included:

#i ncl ude " GGEMS/ gl obal / GGEMSOpenCLManager . hh

#i ncl ude " GGEMS/ gl obal / GGEMS. hh"

#i ncl ude "GCGEMS/ mat eri al s/ GGEMSMat er i al sDat abaseManager . hh"
#1 ncl ude " GGEMS/ physi cs/ GGEMSRangeCut sivanager . hh"

#i ncl ude " GGEMS/ physi cs/ GGEMSPr ocessesManager . hh"

For silent GGEMS execution, the level is set to 0, otherwize 3 for maximum information.

GCGcout . Set Ver bosity(0);
GCGcerr. Set Ver bosity(0);
GGnar n. Set Ver bosi ty(0);

Next step, an OpenCL device is selected. Here, device 0 is selected:

GCGEMSOpenCLManager & opencl _manager = GGEMSOpenCLManager: : Get | nstance();
opencl _manager . Devi ceToAct i vat e(0) ;

Then a material database has to be loaded in GGEMS. The material file provided by GGEMS is in ‘data’ folder. This
file can be copy and paste in your project, and a new material can be added.

GGEMSMat er i al sDat abaseManager & mat eri al _manager = GGEMSMat eri al sDat abaseManager : : Get | nst ance
mat eri al _manager. Set Mat eri al sDat abase("naterial s. txt");

The physical tables can be customized by changing the number of bins and the energy range. The following values
are the default values.

GCGEMSPr ocessesManager & processes_nanager = GGEMSProcessesManager: : Get | nstance();
processes_nanager. Set CrossSect i onTabl eNunber O Bi ns(220) ;

processes_manager. Set Cr ossSect i onTabl eM ni munEner gy(1. 0f , "keV");
processes_manager . Set Cr ossSect i onTabl eMaxi munEner gy(1. Of , "MeV');

The photon physical processes are selecting using the process name, the concerning particle and the associated
phantom (or ‘all’ for all defined phantoms).

processes_nanager . AddProcess(" Conpt on", "gamma", "all");
processes_nanager . AddPr ocess(" Phot oel ectric", "gamm", "all");
processes_nanager . AddProcess("Rayl ei gh", "ganma", "all");

In GGEMS, range cuts are defined in distance, particle type has to be specified and cuts are associated to a
phantom (or ‘all’ for all defined phantoms). The distance is converted in energy during the initialization step. During
the particle tracking, if the energy particle is below to the cut, then the particle is killed and the energy is locally
deposited.

GGEMSRangeCut sManager & range_cuts_nmanager = GGEMSRangeCut sManager: : Get | nstance() ;
range_cuts_nmnager. Set Lengt hCut ("all", "ganmm", 0.1f, "nm');

GGEMS C++ singleton is called with ‘ggems_manager’ variable. All verboses can be set to ‘True' or ‘False’
depending on the amount of details the user needs. In ‘tracking_verbose’, the second parameters in the index of
particle to track. All objects in GGEMS are initialized with the method ‘initialize’. The GGEMS simulations starts with
the method ‘run’.

GGEMS ggens;

ggemns. Set OpenCLVer bose(true);

ggens. Set Mat er i al Dat abaseVer bose(true);
ggens. Set Navi gat or Ver bose(true);

ggemns. Set Sour ceVer bose(true);

ggens. Set Menor yRAMVer bose(true);

31



Portable Document

ggens.
ggens.
ggens.
ggens.
ggens.

Set ProcessVer bose(true);

Set RangeCut sVer bose(true);
Set RandomVer bose(true);

Set ProfilingVerbose(true);
Set Tr acki ngVer bose(true, 0);

The last step, exit GGEMS properly by cleaning OpenCL C++ singleton
GGEMSOpenCLManager : : Get I nstance() . d ean();

Portable Document

GGEMS documentation can be downloaded in PDF format from the following link:
GGEMS pdf

32


https://doc.ggems.fr/v1.1/ggems.pdf

	Welcome to GGEMS Documentation
	Introduction
	Requirements
	Operating Systems
	Supported
	Maybe Supported

	Python Version
	OpenCL Version
	Hardware
	Supported
	Maybe Supported


	Building & Installing
	Prerequisites
	NVIDIA
	Linux & Windows

	INTEL
	Linux & Windows

	AMD
	Linux & Windows


	GGEMS Installation
	Linux
	Windows
	CMAKE Parameters
	BUILD_EXAMPLES
	CMAKE_INSTALL_PREFIX
	DOSIMETRY_DOUBLE_PRECISION
	GGEMS_PATH
	MAXIMUM_PARTICLES
	OPENCL_CACHE_KERNEL_COMPILATION
	OPENCL_KERNEL_PATH
	PYTHON_MODULE_PATH



	Getting Started
	Multi-Device
	Navigators
	Systems
	Flat panel
	Curved

	Phantoms

	World
	Dosimetry
	Physical Processes & Range cuts
	Physical Processes
	Compton Scattering
	Photoelectric Effect
	Rayleigh Scattering
	Process Parameters Building
	Process Verbosity

	Range Cuts

	Sources
	X-ray Source

	GGEMS Commands
	Examples & Tools
	Examples 0: Cross-Section Computation
	Examples 1: Total Attenuation
	Examples 2: CT Scanner
	Examples 3: Voxelized Phantom Generator
	Examples 4: Dosimetry
	Examples 5: World Tracking

	Release Notes
	Supported and Tested Platforms
	What You Can Do in GGEMS
	Compilation Warnings
	GGEMS Software License

	Change log
	CMAKE
	C++
	GGEMS
	Features
	Examples

	GGEMS Design
	Make a GGEMS Project
	Template
	Python
	C++

	Portable Document


